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1 Expand ﬁ in ascending powers of X, up to and including the term in X2, simplifying the

coefficients. [4]

2  Solvetheequation
IN(1+X) =1+InXx,

giving your answer correct to 2 significant figures. [4]

3 Thepolynomial 2x3 + ax? — 4 is denoted by p(x). It is given that (x — 2) isafactor of p(x).
(i) Find the value of a. [2]
When a has this value,

(i) factorise p(x), [2]
(iii) solvetheinequality p(x) > O, justifying your answer. [2]

4 (i) Show that the equation
tan(45° + x) = 2tan(45° - X)

can be written in the form

tan’x — 6tanx+ 1 = 0. [4]
(ii) Hence solve the equation tan(45° + xX) = 2tan(45° — x), for 0° < X < 90°. [3]
5
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The diagram shows a sector OAB of acircle with centre O and radiusr. The angle AOB is o radians,
where 0 < o < %n The point N on OA is such that BN is perpendicular to OA. The area of the
triangle ONB is half the area of the sector OAB.

(i) Show that o satisfies the equation sSin2x = X. [3]

(ii) By sketching asuitable pair of graphs, show that this equation has exactly one root in the interval
0<X<3m. [2]

(iii) Usetheiterative formula
Xn+1 = Sir"(2)(n)’

withinitial valuex; = 1, tofind o correct to 2 decimal places, showing the result of eachiiteration.

(3]
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The complex numbers 1 + 3i and 4 + 2i are denoted by u and v respectively.

(i) Find, intheform x + iy, where x and y are real, the complex numbersu - v and \—Lj [3]

(ii) State the argument of \—lj [1]

In an Argand diagram, with origin O, the points A, B and C represent the numbers u, vand u-v
respectively.

(iii) State fully the geometrical relationship between OC and BA. [2]
(iv) Provethat angle AOB = 2 radians. [2]
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The diagram shows the curve y = x%e 2"
(i) Find the x-coordinate of M, the maximum point of the curve. [4]

(i) Find the area of the shaded region enclosed by the curve, the x-axis and the line x = 1, giving
your answer in terms of e. [5]

An appropriate form for expressing in partial fractionsis

3X
X+ 1)(x-2)
A B

x+1+x—2’

where A and B are constants.

(a) Without evaluating any constants, state appropriate forms for expressing the following in partial
fractions:

) 4x
O ST aeer3)’
2x+1

(X=2)(X+2)?

[1]

(i) [2]

4
3x

—(x+1)(x—2) dx =Inb. [6]

m)$wmaj
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Thelines| and m have vector equations
r=2i—j+4k +s(i+j—k) and r=-2i+2j +k+t(-2i+j +k)
respectively.
(i) Show that | and m do not intersect. [4]
The point P lies on | and the point Q has position vector 2i — k.
(ii) Given that the line PQ is perpendicular to |, find the position vector of P. [4]
(iii) Verify that Q lieson mand that PQ is perpendicular to m. [2]

A rectangular reservoir has a horizontal base of area 1000m?. Attimet = 0, it is empty and water
begins to flow into it at a constant rate of 30m°s™. At the same time, water begins to flow out at a

rate proportional to v/h, where hm is the depth of the water at timets. Whenh =1, %T =0.02.
(i) Show that h satisfies the differential equation
Z—? =0.01(3-vh). [3]

It is given that, after making the substitution x = 3 — /h, the equation in part (i) becomes

dx
(X— 3)a = 0.005x.

(i) Using thefact that x = 3whent = 0, solve this differential equation, obtaining an expression for
tintermsof x. [5]

(iii) Find the time at which the depth of water reaches 4 m. [2]
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